Up until today, if you were looking for a physical ONTAP array for your environment, your choices were the hybrid flash, FAS array offering around 5-10ms of latency or the sub-ms AFF A-series. Sure there was one anomaly in there, the QLC-based FAS 500f, but that AFF in FAS clothing was just that, an anomaly. While I have no evidence to point to here, but my theory is that the 500f was NetApp’s way of dipping their toe in the water of QLC-based arrays. Upon launch, the 500f was pricey and the configurations limited and restricted, both of which were addressed at some point after launch. As an employee at a partner that sells a lot of NetApp, I looked at the 500f when it first launched and then basically never looked at it again because of those two points.
Today, NetApp is announcing the all new C-Series of QLC-based arrays, the “C” being for “Capacity Enterprise Flash”. While the controllers themselves aren’t new, the fact that they only support QLC media is what is different. While I won’t go into the details of what QLC, or Quad Layer Flash is in this post, the fact of the matter is that it is more affordable than Triple Layer Flash (TLC) and almost as performant. What this means for those purchasing NetApp arrays is that they can get near the performance of an AFF system at a fraction of the cost. Most of us in the storage world know that 10k and 15k RPM SAS drives are slowly going to be phased out in favour of high-capacity SATA drives and high-performance NAND storage, leaving a void. QLC-based arrays will fill that void, and at a higher performance level. If you start to research QLC vs TLC, you’ll find lots of concerns around durability which are not completely unfounded, but you would have also found these concerns when the industry went from Multi-cell (MLC) to TLC and that seems to have gone well enough. Technology of the storage devices themselves improve over time and software-based mitigation strategies such as write avoidance also improve. I’m not knowledgeable enough on this latter point to go into details, but ONTAP is a beast and has all sorts of tricks up its sleeve.
So without further ado, I present NetApp’s Enterprise Capacity Flash line, the AFF C800, AFF C400 and AFF C250:
Quick Specs:
AFF C800 | AFF C400 | AFF C250 | |
Max drive count (15.3TB NVMe QLC) | 144 | 96 | 48 |
Max effective capacity (5:1 efficiencies) | 8.8 PB | 5.9 PB | 2.9 PB |
Max Usable capacity (1:1) | 1.6 PiB | 1.06 PiB | 540.37 TiB |
Minimum configurations | 12 × 15.3 | 8 × 15.3 | 8 × 15.3 |
100GbE ports per HA pair | 20 | 16 | 4 |
25GbE ports per HA pair | 16 | 12 onboard / 16 HBA | 4 onboard / 16 HBA |
32Gb FC ports | 32 | 32 | 16 |
Now some of you may have thought, “I thought there was already a C-series with the C190?”, and you’d be right. NetApp is repurposing the C-series branding as well as introducing a successor to the C190, the AFF A150. While the new A150 will still have some restrictions, it won’t be nearly as restrictive as the C190. The physical form-factor remains the same as the C190, but the A150 will allow for up to two expansion shelves for a total of 72 SAS SSDs including the internal ones in capacities of 960GB, 3.8TB and 7.6TB, coming to a max usable capacity of ~402TiB, or 2.2PB at an efficiency level of 1:5.
Back to the new C-Series conversation, they bring with them a new default licensing model, ONTAP One. ONTAP One is something I have personally been asking for many years at this point, and it includes all of the licenses; Core, Data Protection, Hybrid Cloud and Security & Compliance. Personally I’m looking forward to not having to worry about what features are available with a certain license offering, instead, C-Series with ONTAP One as the default licensing model will ensure you or your customers will never be left wondering if their array has a given feature.
The C-Series should be available to quote as of March 27, 2023 and should start shipping by the end of April. This statement as well as all of the information above is based on pre-release information I received and may be subject to change at press time. I will endeavour to add corrections below should any of the above change at launch.