Tag Archives: AFF

C-Series lineup

NetApp Announces A Whole New Line

Up until today, if you were looking for a physical ONTAP array for your environment, your choices were the hybrid flash, FAS array offering around 5-10ms of latency or the sub-ms AFF A-series. Sure there was one anomaly in there, the QLC-based FAS 500f, but that AFF in FAS clothing was just that, an anomaly. While I have no evidence to point to here, but my theory is that the 500f was NetApp’s way of dipping their toe in the water of QLC-based arrays. Upon launch, the 500f was pricey and the configurations limited and restricted, both of which were addressed at some point after launch. As an employee at a partner that sells a lot of NetApp, I looked at the 500f when it first launched and then basically never looked at it again because of those two points.

Today, NetApp is announcing the all new C-Series of QLC-based arrays, the “C” being for “Capacity Enterprise Flash”. While the controllers themselves aren’t new, the fact that they only support QLC media is what is different. While I won’t go into the details of what QLC, or Quad Layer Flash is in this post, the fact of the matter is that it is more affordable than Triple Layer Flash (TLC) and almost as performant. What this means for those purchasing NetApp arrays is that they can get near the performance of an AFF system at a fraction of the cost. Most of us in the storage world know that 10k and 15k RPM SAS drives are slowly going to be phased out in favour of high-capacity SATA drives and high-performance NAND storage, leaving a void. QLC-based arrays will fill that void, and at a higher performance level. If you start to research QLC vs TLC, you’ll find lots of concerns around durability which are not completely unfounded, but you would have also found these concerns when the industry went from Multi-cell (MLC) to TLC and that seems to have gone well enough. Technology of the storage devices themselves improve over time and software-based mitigation strategies such as write avoidance also improve. I’m not knowledgeable enough on this latter point to go into details, but ONTAP is a beast and has all sorts of tricks up its sleeve.

So without further ado, I present NetApp’s Enterprise Capacity Flash line, the AFF C800, AFF C400 and AFF C250:

AFF C800
AFF C400
AFF C250

Quick Specs:

AFF C800AFF C400AFF C250
Max drive count (15.3TB NVMe QLC)1449648
Max effective capacity (5:1 efficiencies)8.8 PB5.9 PB2.9 PB
Max Usable capacity (1:1)1.6 PiB1.06 PiB540.37 TiB
Minimum configurations12 × 15.38 × 15.38 × 15.3
100GbE ports per HA pair20164
25GbE ports per HA pair1612 onboard / 16 HBA4 onboard / 16 HBA
32Gb FC ports323216
By the numbers

Now some of you may have thought, “I thought there was already a C-series with the C190?”, and you’d be right. NetApp is repurposing the C-series branding as well as introducing a successor to the C190, the AFF A150. While the new A150 will still have some restrictions, it won’t be nearly as restrictive as the C190. The physical form-factor remains the same as the C190, but the A150 will allow for up to two expansion shelves for a total of 72 SAS SSDs including the internal ones in capacities of 960GB, 3.8TB and 7.6TB, coming to a max usable capacity of ~402TiB, or 2.2PB at an efficiency level of 1:5.

Back to the new C-Series conversation, they bring with them a new default licensing model, ONTAP One. ONTAP One is something I have personally been asking for many years at this point, and it includes all of the licenses; Core, Data Protection, Hybrid Cloud and Security & Compliance. Personally I’m looking forward to not having to worry about what features are available with a certain license offering, instead, C-Series with ONTAP One as the default licensing model will ensure you or your customers will never be left wondering if their array has a given feature.

The C-Series should be available to quote as of March 27, 2023 and should start shipping by the end of April. This statement as well as all of the information above is based on pre-release information I received and may be subject to change at press time. I will endeavour to add corrections below should any of the above change at launch.

There’s a new NVMe AFF in town!

Yesterday, NetApp announced a new addition to the midrange tier of their All-Flash FAS line, the AFF A320. With this announcement, end-to-end NVMe is now available in the midrange, from the host all the way to the NVMe SSD. This new platform is a svelte 2RU that supports up to two of the new NS224 NVMe SSD shelves, which are also 2RU. NetApp has set performance expectations to be in the ~100µs range.

Up to two PCIe cards per controller can be added, options are:

  • 4-port 32GB FC SFP+ fibre
  • 2-port 100GbE RoCEv2* QSFP28 fibre (40GbE supported)
  • 2-port 25GbE RoCEv2* SPF28 fibre
  • 4-port 10GbE SFP+ Cu and fibre
    *RoCE host-side NVMeoF support not yet available

A couple of important points to also note:

  • 200-240VAC required
  • DS, SAS-attached SSD shelves are NOT supported

An end-to-end NVMe solution obviously needs storage of some sort, so also announced today was the NS224 NVMe SSD Storage Shelf:

  • NVMe-based storage expansion shelf
  • 2RU, 24 storage SSDs
  • 400GB/s capable, 200Gb/sec per shelf module
  • Uplinked to controller via RoCEv2
  • Drive sizes available: 1.9TB, 3.8TB and 7.6TB. 15.3TB with restrictions.

Either controller in the A320 has eight 100GbE ports on-board, but not all of them are available for client-side connectivity. They are allocated as follows:

  • e0a → ClusterNet/HA
  • e0b → Second NS224 connectivity by default, or can be configured for client access, 100GbE or 40GbE
  • e0c → First NS224 connectivity
  • e0d → ClusterNet/HA
  • e0e → Second NS224 connectivity by default, or can be configured for client access, 100GbE or 40GbE
  • e0f → First NS224 connectivity
  • e0g → Client network, 100GbE or 40Gbe
  • e0h → Client network, 100GbE or 40Gbe

If you don’t get enough client connectivity with the on-board ports, then as listed previously, there are myriad PCIe options available to populate the two available slots. In addition to all that on-board connectivity, there’s also MicroUSB and RJ45 for serial console access as well as the RJ-45 Wrench port to host e0M and out-of-band management via BMC. As with most port-pairs, the 100GbE ports are hosted by a single ASIC which is capable of a total effective bandwidth of ~100Gb.

Food for thought…
One interesting design change in this HA pair, is that there is no backplane HA interconnect as has been the case historically; instead, the HA interconnect function is placed on the same connections as ClusterNet, e0a and e0d. This enables some interesting future design possibilities, like HA pairs in differing chassis. Also, of interest is the shelf connectivity being NVMe/RoCEv2; while currently connected directly to the controllers, what’s stopping NetApp from putting these on a switched fabric? Once they do that, drop the HA pair concept above, and instead have N+1 controllers on a ClusterNet fabric. Scaling, failovers and upgrades just got a lot more interesting.

What you need to know about NetApp’s 40GbE options

­With the introduction of the new NetApp platforms back in September 2016, came 40GbE as well as 32Gb Fibre Channel connectivity.

I had my first taste of 40GbE on the NetApp side back in January when I got to install the first All Flash FAS A700 in Canada. The client requested a mix of 40GbE and 16Gb FC with some of the 40GbE being broken out into 4 × 10GbE interfaces and some being used natively.

NetApp is deploying two flavours of 40GbE cards: the X1144A for the AFF A300, AFF A700s and FAS8200, and the X91440A for the AFF A700 and FAS9000 storage systems. At first glance, you might be tempted to assume that those are the same PCIe card since the part numbers are very similar (the latter just being in some sort of carrier to satisfy the I/O module requirement for the blade-style chassis that is home to the A700 and FAS9000), Upon further inspection the two are not exactly equal.

The ports on most PCIe cards and onboard interfaces are deployed in pairs, with one shared application-specific integrated circuit (ASIC) on the board behind the physical ports. On the X1144A, both external ports share one ASIC with an available combined bandwidth of 40Gb/s, whereas the X91440A has two ASICs. Each has two ports, but one is internal and not connected to anything, giving you 40Gb/s per external port.

The ASIC (or controller) in question is the Intel XL710. What’s important about this is that both external ports on an X91440A can be broken out to 4 × 10GbE interfaces for a total of eight, or one can remain at 40GbE while the other is broken out. On the X1144A however, you can either connect both ports to your switch using 40GbE connections or you can break-out port A to 4 × 10GbE and port B gets disabled. According to Intel, if you connect both ports via 40GbE, “The total throughput supported by the 710 series is 40 Gb/s, even when connected via two 40 Gb/s connections.”

Now before we get all up in arms about this, lets really get into the weeds here. Both the FAS8200/FAS9000 and the AFF A300/700 are using PCIe 3.0. Each PCIe 3.0 lane can carry 8 Gigatransfers per second (GT/s). For the purposes of this post, that is close enough to 8Gb/s. The FAS8200/AFF A300 has an Intel D-1587 CPU with a maximum eight lanes per slot, so roughly 64Gb/s of throughput, whereas the FAS9000/AFF A700 has an Intel E5-2697 with a maximum 16 lanes per I/O slot which gives it about 128Gb/s of throughput. So even if NetApp included a network interface card for the A300/FAS8200 with two XL710’s on it, the PCIe slot it’s connected to couldn’t provide 80Gb/s of throughput, whereas the the I/O modules in the A700/FAS9000 can.

Say you want to change between 40GbE and 10GbE. Unlike modifying UTA2 profiles (as explained here), with the XL710, you need to get into maintenance mode first and use the nicadmin command. Here’s an example:

sysconfig output before:

slot 1: 40 Gigabit Ethernet Controller XL710 QSFP+
                 e1a MAC Address:    00:a0:98:c5:b2:fb (auto-40g_cr4-fd-up)
                 e1e MAC Address:    00:a0:98:c5:b2:ff (auto-unknown-down)

At this point I already had the breakout cable installed. That’s why the second link shows as down.

Conversion example:

*> nicadmin
 nicadmin convert -m { 40G | 10G } <port-name>
 
 
 *> nicadmin convert -m 10g e1e
 Converting e1e 40G port to four 10G ports
 Halt, install/change the cable, and then power-cycle the node for
 the conversion to take effect.  Depending on the hardware model,
 the SP (Service Processor) or BMC (Baseboard Management Controller)
 can be used to power-cycle the node.

sysconfig output after:

slot 1: 40 Gigabit Ethernet Controller XL710 QSFP+
                 e1a MAC Address:    00:a0:98:c5:b2:fb (auto-40g_cr4-fd-up)
                 e1e MAC Address:    00:a0:98:c5:b2:ff (auto-10g_twinax-fd-up)
                 e1f MAC Address:    00:a0:98:c5:b3:00 (auto-10g_twinax-fd-up)
                 e1g MAC Address:    00:a0:98:c5:b3:01 (auto-10g_twinax-fd-up)
                 e1h MAC Address:    00:a0:98:c5:b3:02 (auto-10g_twinax-fd-up)

Unfortunately I don’t have access to either a FAS8200 nor an AFF A300 with 40GbE otherwise I’d provide the sysconfig output before and after there as well.

Now, there’s a bit of a debate going on around the viability of 40GbE over 100GbE. While 40GbE is simply a combined 4 × 10GbE; 100GbE is only a combined 4 × 25GbE. With regards to production costs, apparently to make a 40GbE QSFP+, you literally combine 4 lasers (hence the Q in QSFP) into the module; well, the same goes for 100GbE. You only need one laser to produce the wavelength for 25GbE, and while that still means you need four for 100GbE, four times the production cost still yields 250% of the throughput of 40GbE which makes me wonder where it will end up in a year.

So there you go, more than you ever wanted to know about NetApp’s recent addition of 40GbE into the ONTAP line of products as well as my personal philosophical waxing around the 40 versus 100 GbE debate.